Особенности применения керамики и композитных материалов в медицине

3 лекция

• Керамика и композитные материалы занимают особое место среди медицинских материалов благодаря своим уникальным свойствам. Их применяют в хирургии, стоматологии, ортопедии, имплантологии и других областях.

Керамика в медицине

Особенности:

Биосовместимость — не вызывает токсических реакций и минимально взаимодействует с тканями.

Химическая инертность — устойчивость к действию биологических жидкостей, отсутствие коррозии.

Высокая прочность на сжатие — пригодна для несущих конструкций (например, зубные коронки, суставные головки).

Износостойкость — долго сохраняет форму и функциональность.

Хрупкость — низкая ударная прочность и трещиностойкость, что ограничивает применение.

Эстетичность — цвет и прозрачность могут имитировать ткани (важно в стоматологии).

Регулируемая биоактивность — включение биоактивных наполнителей для стимулирования остеоинтеграции.

Применение:

Дентальная керамика (коронки, виниры, вкладки).

Ортопедические имплантаты (головки тазобедренных протезов из оксида циркония и алюминия).

Биокерамика (гидроксиапатит, трикальцийфосфат) для костной пластики и покрытия металлических имплантатов.

Хирургические инструменты с керамическим покрытием.

Из них изготавливают химическую посуду, тигли, стаканы, чашки для выпаривания, санитарно-технические изделия, предметы ухода за больными (подкладные судна, поильники, чашки); применяют при зубопротезировании и изготовлении деталей диагностической аппаратуры (пьезокерамика), при эндопротезировании (кости, межпозвоночные диски, роговица, клапан, сердца - корундокерамика).

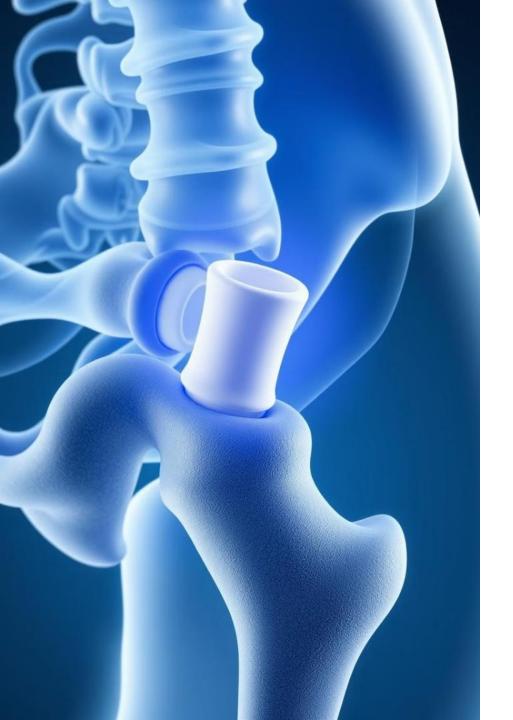
Достоинства корундокерамики (в основе до 99% оксида алюминия):

- Высокая механическая <u>прочность</u>,
- <u>Биоинертность</u> (отсутствие токсичности, аллергенности, травмирующего и раздражающего действия),
- <u>Гемосовместимость,</u>
- <u>Устойчивость</u> к высокотемпературной стерилизации,
- Высокая технологичность.

Керамические материалы получают спеканием глин и их смесей с минеральными добавками.

Классификация керамических материалов

Биоинертные керамики


Не взаимодействуют с биологическими тканями, обеспечивают прочность и устойчивость.

Биоактивные керамики

Взаимодействуют с тканями, стимулируют костную регенерацию.

Биорезорбируемые керамики

Со временем рассасываются, заменяются костной тканью.

Биоинертные керамики

- Оксид алюминия (Al2O3)
- Диоксид циркония (ZrO2)

Используются для создания искусственных суставов, зубных имплантатов, ортопедически инструментов.

Биоактивные керамики

Гидроксиапатит (НА)

Основной минеральный компонент костной ткани, стимулирует остеоинтеграцию.

Биостекло (Bioglass)

Взаимодействует с костью, образуя прочное связующее соединение.

Применяются для восстановления костной ткани, изготовления костных трансплантатов, покрытия медицинских устройств.

Биорезорбируемые керамики

Трикальцийфосфат (ТСР)

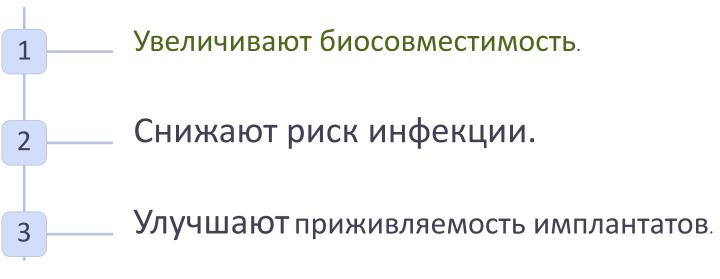
Со временем рассасываются, не оставляя следов.

Используются в стоматологии, челюстно-лицевой хирургии, травматологии.

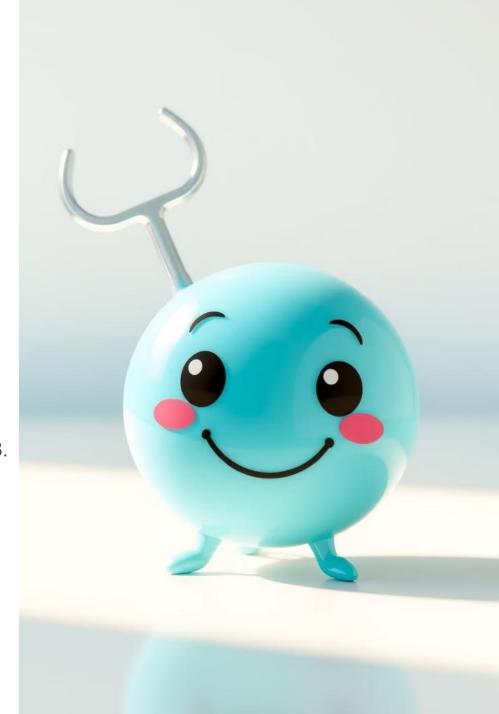
Заменяют поврежденные костные ткани, обеспечивая биологическое восстановлени

Керамические имплантаты

Преимущества


Отличная биосовместимость, высокая прочность, устойчивость к коррозии, эстетичность.

Недостатки


Высокая стоимость, сложный процесс установки, риск отторжения в редких случаях.

Используются для замены суставов, зубов, костных дефектов.

Керамические покрытия

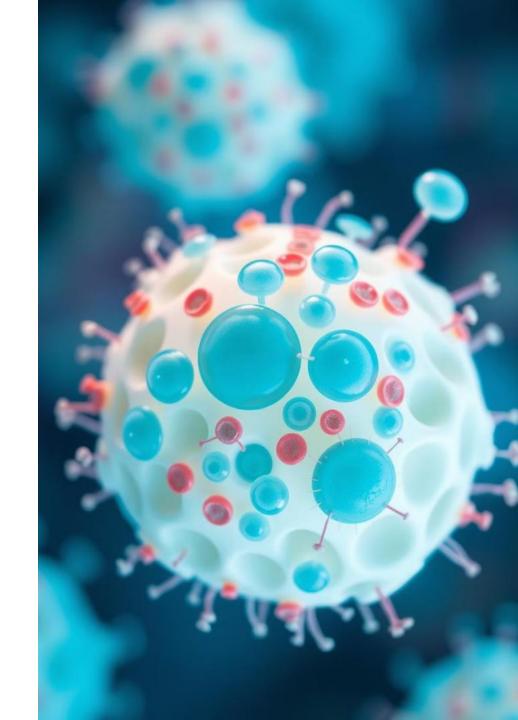
Покрывают инструменты, имплантаты, катетеры, уменьшая риск отторжения и инфекции.

Современные достижения

Разработка новых материалов с улучшенными свойствами.

3D-печать керамических имплантатов с индивидуальной геометрией.

Использование нанокерамики для повышения биосовместимости.


Разработка керамических материалов с антибактериальными свойствами.

Новые материалы обеспечивают более высокую прочность, биосовместимость и биоактивность.

Перспективы использования

- Регенерация тканей
 - Восстановление поврежденных органов
 - Лечение хронических заболеваний

Керамические материалы играют ключевую роль в разработке новых методов лечения и восстановления.

Композитные материалы в медицине

Особенности:

Сочетание свойств разных материалов — можно регулировать прочность, гибкость, биосовместимость.

Легкость и высокая прочность при малом весе.

Возможность моделирования структуры под конкретные задачи (например, биоактивность или пористость).

Применение:

Стоматологические композиты (пломбировочные материалы, адгезивы, композитные коронки).

Ортопедические конструкции (углерод-углеродные и углерод-полимерные композиты для протезов и фиксаторов костей).

Кардиохирургия (композитные клапаны сердца).

Травматология и нейрохирургия (пластины, сетки, элементы для восстановления костей и черепа).

Биорезорбируемые композиты (полимеры с наполнителями для временных фиксаторов костей).

Применение композитных материалов в ортопедии

Преимущества

Композитные материалы в ортопедии обладают превосходной биосовместимостью, эластичностью и рентгенопрозрачностью, что делает их более предпочтительными, чем металлические имплантаты.

Примеры материалов

Углеродное волокно, полиэфирэфиркетон (PEEK) и биоактивные стекла широко используются в ортопедической хирургии.


Композиты в стоматологии

- Композитные материалы используются для создания пломб, коронок, мостов и съемных протезов, предлагая эстетику, прочность и адгезию к тканям зуба.
- Композитные смолы и стеклоиономерные цементы используются для изготовления пломб, а композитные материалы широко применяются в ортодонтии, например, для изготовления брекетов

Сердечно-сосудистые композиты

Композитные материалы используются для создания искусственных клапанов сердца и сосудистых протезов, обеспечивая улучшенную биосовместимость и долговечность.

Полиуретан, полиэстер и углеродное волокно - это популярные композитные материалы, используемые в сердечно-сосудистой хирургии.

Преимущества композитных материалов в медицине

Композитные материалы биосовместимы, что снижает риск отторжения имплантата.

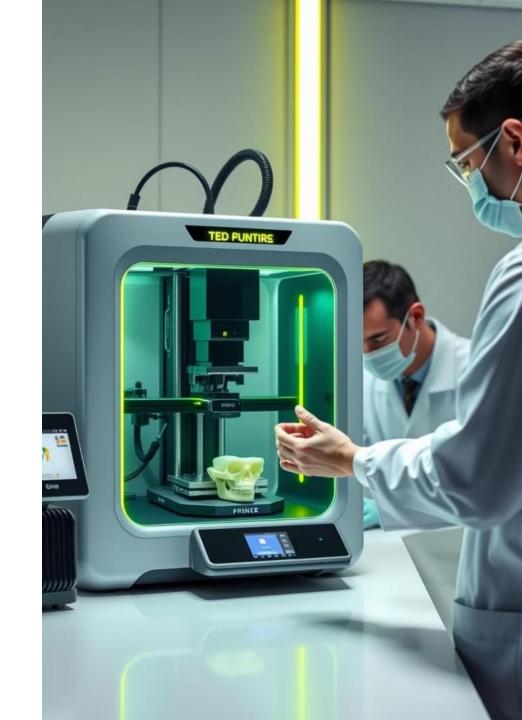
2 — Они прочные и легкие, улучшая функциональность и комфорт пациентов.

Композитные материалы рентгенопрозрачны, что упрощает диагностику и контроль послеоперационного состояния.

Их можно формировать в сложные формы, что позволяет индивидуализировать имплантаты и протезы.

COMPOSITE EE IMPLANTS WEELL IMIELNT METAL IMPLANT COSSO COST3 2094 20516 COS 6 COST4 COS₁ The compnaite program of the semognetive purifical puting of operant in 160 of exposste implint and emphasis impliant to all laste the composite conperon Clod/ MO trill 670, oniat peponst, 45, 2190,000 cn; 200/ TnE0, 50 @www.2017/tom

Проблемы и ограничения использования композитов


Высокая стоимость производства и сложность обработки.

Необходимость дальнейших исследований биосовместимости и долговечности.

Отсутствие единых стандартов качества

Перспективы развития композитных материалов в медицине

- Разработка новых биоразлагаемых композитов.
 - Применение нанокомпозитов для улучшения свойств материалов.
 - 3D-печать композитных имплантатов с индивидуальными характеристиками.
 - Интеграция с технологиями регенеративной медицины

/ Сравнение

Свойство	Керамика	Композиты
Биосовместимость	Высокая	Высокая (зависит от состава)
Прочность	Очень высокая на сжатие	Высокая при малом весе
Износостойкость	Отличная	Хорошая (но ниже керамики)
Хрупкость	Высокая	Ниже, более пластичны
Эстетика	Отличная (зубные материалы)	Отличная (имитация тканей)
Возможность модификации	Ограниченная	Очень широкая

• Таким образом, керамика чаще применяется там, где важна прочность и долговечность (зубные и суставные протезы), а композиты — в областях, где требуется комбинация свойств, эстетика и адаптивность (стоматология, костная пластика, сердечнососудистая хирургия).